Spatial clustering of protein binding sites for template based protein docking
نویسندگان
چکیده
MOTIVATION In recent years, much structural information on protein domains and their pair-wise interactions has been made available in public databases. However, it is not yet clear how best to use this information to discover general rules or interaction patterns about structural protein-protein interactions. Improving our ability to detect and exploit structural interaction patterns will help to provide a better 3D picture of the known protein interactome, and will help to guide docking-based predictions of the 3D structures of unsolved protein complexes. RESULTS This article presents KBDOCK, a 3D database approach for spatially clustering protein binding sites and for performing template-based (knowledge-based) protein docking. KBDOCK combines residue contact information from the 3DID database with the Pfam protein domain family classification together with coordinate data from the Protein Data Bank. This allows the 3D configurations of all known hetero domain-domain interactions to be superposed and clustered for each Pfam family. We find that most Pfam domain families have up to four hetero binding sites, and over 60% of all domain families have just one hetero binding site. The utility of this approach for template-based docking is demonstrated using 73 complexes from the Protein Docking Benchmark. Overall, up to 45 out of 73 complexes may be modelled by direct homology to existing domain interfaces, and key binding site information is found for 24 of the 28 remaining complexes. These results show that KBDOCK can often provide useful information for predicting the structures of unknown protein complexes. AVAILABILITY http://kbdock.loria.fr/ CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Novel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملPutative Binding Sites of Dopamine and Arachidonoyl Dopamine to Beta-lactoglobulin: A Molecular Docking and Molecular Dynamics Study
Because of participation in many aspects of human life, and due to oxidation-sensitive characteristics of dopamine (DA) and arachidonoyl dopamine (AA-DA), the necessity of biocompatible carrier to keep them against oxidation is of importance. In this work, we explored the putative binding sites of DA and AA-DA to -lactoglobulin (BLG) as potent carrier. Docking results identified the binding si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 27 20 شماره
صفحات -
تاریخ انتشار 2011